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This paper presents a study of the steady, axisymmetric, creeping translation of a 
fluid sphere in a tube for the case in which surfactant is adsorbed onto the fluid 
sphere interface. Marangoni stresses caused by the convective redistribution of 
surfactant are computed perturbatively in the limit of sorption-controlled uniform 
retardation, and fully converged numerical solutions of the creeping-flow equations 
including the Marangoni stress are obtained by a collocation technique. 

The results indicate that when the fluid sphere moves in a liquid which is at rest 
at  infinity, the Marangoni stress retards the particle velocity. This retardation 
generally increases with the sphere to tube diameter ratio up to a value of 
approximately 0.6, whereupon the retardation begins to level off or even become 
reduced. When the sphere is suspended in a Poiseuille flow, stagnation rings develop 
on the sphere surface, and the Marangoni stresses that derive from this surface 
convection pattern can accelerate the fluid particle when the particle velocity is small 
with respect to the Poiseuille centreline velocity, but in the same direction as that 
velocity. 

1. Introduction 
This study is the first of a two-part theoretical examination of the steady, 

axisymmetric, creeping translation of a fluid sphere in a tube for the case in which 
bulk-soluble surface-active molecules are adsorbed onto the sphere interface. The 
general mechanism by which surfactant adsorption onto fluid interfaces affects the 
interface hydrodynamics was first formulated by Frumkin I% Levich (1947). 
Surfactant molecules which kinetically adsorb onto a clean fluid interface are swept 
to stagnation regions on the surface where the interfacial flow converges. At  these 
regions the surfactant molecules may accumulate, or kinetically desorb and 
subsequently diffuse away from the particle vicinity. Surfactant accumulation at a 
converging stagnation region of the fluid surface locally lowers the interfacial tension 
relative to the neighbouring area. The interface is therefore tugged in a direction 
away from the stagnation region, and towards the bordering regions of lower surface 
concentration and higher interfacial tension. The consequences of this Marangoni 
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stress are twofold. First, as it is directed opposite to that of the surface flow, it retards 
the interface velocity. Second, at steady state, the Marangoni tension is balanced by 
a viscous traction exerted on the surface by the adjoining phases. In the case of the 
movement of fluid particles, this traction changes the drag exerted on the particle by 
the continuous phase as compared to the clean-surface value. 

When the fluid particle translates in an infinite medium, the effect of the 
Marangoni stress is straightforward. The surface flow pattern is unidirectional, 
emerging from the leading stagnation pole and converging a t  the trailing one. 
Surfactant is convected to the rear pole, creating a Marangoni tension which is 
exerted away from the rear. This tension reduces the surface velocity. The Marangoni 
tension is also balanced by an opposing viscous traction which retards the fluid 
particle velocity since i t  acts in a direction opposite to  the direction of motion of the 
particle. The infinite-medium problem of the movement of a fluid sphere has been the 
subject of many theoretical studies which have explored the regimes of slow kinetic 
or diffusive exchange between the bulk and the surface (stagnant-cap behaviour, see 
Savic 1953; Davis & Acrivos 1966; Sadhal & Johnson 1982), fast exchange (uniform 
retardation, see Levich 1962 ; Schechter & Parley 1963 ; Newman 1967), and finite- 
diffusion-limited or sorption-kinetic-limited exchange (Wasserman & Slattery 1969 ; 
Harper 1973, 1982; Saville 1973; Levan & Newman 1976; Holbrook & Levan 
1983a, b ;  Levan & Holbrook 1989). 

When a fluid particle translates in a tube, the surface flow pattern can become 
more complicated, and discerning the partitioning of surfactant on the surface, and 
calculating the Marangoni tension, is a correspondingly more difficult task. If the 
particle moves by virtue only of a body force, and the fluid a t  infinity is at rest, then 
in a reference frame fixed to the particle, the surface flow is from the leading to the 
trailing pole. This is the case of uniform flow at  infinity and it is analogous to that 
of the movement of a fluid particle in an infinite medium : surfactant is convected to 
the rear pole and the viscous traction which balances the Marangoni tension reduces 
the particle velocity. For this case of uniform flow at  infinity, the feature that 
distinguishes motion in a tube from an infinite medium is that for the same particle 
velocity, the surface convection is stronger in the tube flow because of the presence 
of the wall boundary. The accumulation of surfactant at the trailing pole is 
proportionately higher, and hence so is the retarding drag. 

If the fluid particle is suspended in a Poiseuille flow, then, in a particle fixed frame, 
two stagnation rings can develop on the particle surface if the particle velocity is less 
than (but in the same direction as) the centreline velocity of the suspending flow. 
When stagnation rings develop, fluid diverges from the front ring and back pole, and 
converges to the trailing ring and front pole. Hence surfactant is swept towards the 
front pole and the back ring. The accumulation caused by convection towards the 
front pole, and from the back pole to the back ring, gives rise to Marangoni tensions 
which can increase the particle velocity, although these will be modulated by the 
tension set up by accumulation from the flow from the front ring to  the back ring. 

The aim of the present paper and Part 2 (He, Dagan & Maldarelli 1990) is (i) to 
quantify the hydrodynamic interaction of the tube wall with the surface of a 
surfactant-laden fluid particle for the case in which the particle moves in a liquid a t  
rest, and (ii) to understand whether the particle velocity is retarded or accelerated 
when it is suspended in a Poiseuille flow and stagnation rings develop. These papers 
will only examine the case of single fluid spheres moving axisymmetrically and a t  low 
Reynolds number through the cylindrical tube, and will focus on the computation of 
the hydrodynamic drag exerted by the continuous phase on the sphere. Studies of the 



Influence of surfactant adsorption on the motion of a sphere in a tube 3 

axisymmetric, low-Reynolds-number translation of surfactant-laden fluid spheres in 
tubes are not available in the literature, although the underlying clean surface flow 
has been examined both approximately for small to  moderate sphere to tube 
diameter ratios (Haberman & Sayre 1985; Brenner 1970, 1971), and exactly by 
numerical solution (Hyman & Skalak 1969, 1970). 

The consideration of fluid spheres in these two papers leaves unresolved the effect 
of surfactants on the movement of non-spherical particles in tubes, most notably 
fluid slugs. Again, the clean flow problem is well understood both asymptotically and 
numerically (Bretherton 1961; Park & Homsy 1984; Shen & Udell 1985; Reinelt & 
Saffman 1985; Westborg & Hassager 1989; Martinez & Udell 1989, 1990). However, 
the influence of surfactants on the movement of a fluid slug is only beginning to be 
theoretically studied (cf. the work of Bretherton 1961 and Goldsmith & Mason 1973 
which assume a rigid interface in the bubble-fixed frame -this model is also discussed 
in the text by Probstein 1989, Hirasaki & Lawson 1985, Moulai-Mostefa, Meister & 
Barthes-Bissel 1986 and Ginley & Radke 1989 on the regime of uniform retardation 
controlled by sorption kinetics, Herbolzheimer 1987 for a regime in which the surface 
velocity is zero in the laboratory-fixed frame, and Ratulowski & Chang 1990 for a 
discussion of the effects of finite diffusive and kinetic exchange in the limit of an 
asymptotically small bulk concentration of surfactant). The intention here is that 
the results obtained in these two papers on fluid spheres, especially those concerning 
the hydrodynamic drag and the surfactant partitioning when two stagnation rings 
are present on the interface, should prove useful to the study of the impact of 
surfactants on the slug flow regime. 

In this first paper, it is assumed that the rate at which surfactant kinetically 
desorbs from the fluid sphere surface is fast in comparison to the rate at  which it is 
transported along the surface by convection. Further, the rate of diffusive exchange 
between the bulk and the sublayer is assumed to be faster than the kinetic desorption 
process, and therefore the surfactant distribution is only controlled by the desorption 
step. For this regime, because the desorption and diffusive transport processes are 
fast, surfactant cannot accumulate at converging surface stagnation points, and the 
surface concentration only deviates slightly from the uniform value achieved with no 
flow. Since the uniform distribution does not create a Marangoni stress, drag 
coefficients are determined as perturbative corrections to the clean surface case. The 
second part of this series (He et al. 1990) studies the opposite regime in which the 
surfactant desorption kinetics is slower than surface convection (and the sub- 
layer-surface diffusive exchange), and a stagnant cap whose size is determined by the 
desorption step develops in the region of accumulation. 

In each of these papers, exact numerical solutions of the steady creeping-flow 
equations are obtained by a method first outlined by Leichtberg, Pfeffer & 
Weinbaum (1976) in the study of the motion of clusters of solid spheres in tubes: 
general analytical solutions of the stream-function equations for flow in the fluid 
space between the particle and the tube wall that satisfy exactly the wall kinematic 
constraints are constructed, and then the conditions on the sphere surface are 
satisfied by collocation. 

This paper is organized into five sections. Section 2 details the exact governing 
equations and boundary conditions ($2. l ) ,  and outlines the perturbation scheme that 
describes the regime of kinetically controlled uniform retardation (§ 2.2). Section 3 
outlines the numerical solution procedure. The solution technique involves exact 
satisfaction of the wall hydrodynamic conditions, and a pointwise satisfaction of the 
kinematic and surfactant mass transfer conditions at  the spherical particle interface 
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(53.1). Convergence criteria and a verification of the method by comparison to the 
results for solid spheres and fluid spheres uncontaminated with adsorbed surfactant 
are presented in $3.2. The results, detailed in $4, consist of the tabulations of 
hydrodynamic drag coefficients ($4.1), and the calculation of terminal velocities and 
the presentation of velocity fields ($4.2) for several flow regimes. The paper ends with 
conclusions ($ 5) .  

2. Formulation 
2 , l .  Governing equations and boundary conditions 

The problem under examination is that of a fluid droplet moving steadily and 
axisymmetrically through a continuous liquid in an infinitely long cylindrical tube. 
Both the droplet and continuous phases are assumed to be incompressible and 
Newtonian. Far away from the droplet, the continuous fluid flow is either stationary 
or Poiseuillian. The Reynolds and capillary numbers are assumed to be small enough 
that inertia is negligible and the droplet retains a spherical shape. A bulk-soluble 
surfactant is present in the continuous phase and is adsorbed on the surface of the 
droplet. The concentration of surfactant far from the droplet is assumed to be 
uniform. In  the solution technique that will be used both cylindrical ( p , w , z )  and 
spherical coordinates ( r ,  8, 4) are needed. The origin of both systems is located a t  the 
centre of the moving droplet, and therefore in these systems the tube wall is moving 
in the axial direction (see figure 1) .  The velocity of the droplet in the absence of the 
surfactants is denoted as U;. (Dimensional quantities are marked by a prime, and 
dimensionless quantities are unprimed throughout the analysis.) Uo is taken as 
positive when the drop is moving in the positive z-direction, and therefore, in the 
droplet frame, the wall is moving in the ---direction when Uo is greater than zero. 
The centreline velocity in the Poiseuille flow is denoted as V’ and is taken as positive 
when Poiseuille flow is in the +z-direction. The angle 8 is measured from the front 
stagnant point and the gravitational force is acting in the ---direction. 

In formulating the hydrodynamic equations for the droplet motion, droplet and 
continuous-phase variables are denoted by superscripts ( 1 )  and (2) respectively. The 
tube and the droplet radius are denoted by b‘ and a’ respectively. Coordinates are 
non-dimensionalized by the droplet radius a’. The kinematic variables (of both 
phases) are scaled as follows: velocities by the steady translational velocity of the 
droplet in the absence of the surfactant in the tube, Uo, and shear stress tensors 7; 

and pressure P’ by ,d2)V0/a’, where ,u’(~) is the viscosity of the exterior fluid. The ratio 
of the droplet to continuous-phase viscosity is denoted by K ( K  = p’(l)/,~’(~)). The 
surfactant concentration r is non-dimensionalized by r0, which is the surfactant 
concentration in equilibrium with the uniform bulk concentration C’,. The bulk 
concentration C‘ in the continuous phase is non-dimensionalized by the far-field 
value cl,. Since the flow is axisymmetric and incompressible, velocities may be 
represented by a stream function $‘, which is non-dimensionalized by U’(~)U~.  

The NavierStokes equation for axisymmetric flow can be written in terms of a 
stream function $($) (Happel & Brenner 1973). This stream function can be expressed 
in terms of cylindrical (p ,  z )  or spherical ( r ,  0)  coordinates. For the drop phase, only 
the representation in spherical coordinates is necessary, and is denoted ${i!(r, e),  
while for the exterior phase, equivalent representations for the stream function in 
terms of either cylindrical ( $ { t { ( z ,  p ) )  or spherical ($$](r,  0 ) )  coordinates proves 
useful. (Note that the two representations are related through the coordinate 
transformation ; thus ${:!(r, 8) = ${t’,(p = r sin 0,  z = r cos O ) . )  When $ is expressed in 
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FIGURE 1. Definition sketch of the axisymmetric motion in a tube in a’frame moving with the 
spherical fluid particle velocity. The sketch presents the case for motion in an otherwise quiescent 
medium ; for suspension in Poiseuille flow the flow at infinity would be a parabolic profile added to 
the uniform flow. The presence of surfactants in the continuous phase is indicated by the figures 
with heads and tails. 

spherical coordinates, the stream function satisfies the equation ETs,(E& $::\) = 0, 
where 

and the velocity components are given by 

In the above, the subscript ‘s’ denotes the spherical representation of the velocity 
vector field. When expressed in cylindrical coordinates, the stream function satisfies 
the equation E:c,(E;c, $.It\) = 0, where 
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and the velocity components are given by 

The boundary conditions are formulated at  the centre of the droplet, the tube wall, 

(i) At the droplet centre, limr+o V{iIr and limr+o V{i,’e exist. 
(ii) Far from the droplet, the velocity field is either uniform 

the droplet surface and far from the droplet. These are: 

where U is the velocity of the droplet and V is the centreline velocity of the Poiseuille 
flow a t  infinity (non-dimensionalized by &). 

(iii) At the tube wall, p = b ( b  = b’/a’) 

v{:Iz = -u, V& = 0. (2.7) 

(iv) At the surface of the droplet, r = 1 ( r  = //a‘ = 1) 

(2.8) 

(2.9) 

v{;& = V(2) (s)r = 0, 

(1) - p 2 ’  vwe - (s) 0’ 

(2.10) 

where n’ is the surface tension, and the last term on the left-hand side of (2.10) 
represents the Marangoni stress due to the surfactant gradient. 

Owing to the assumption that the droplet retains its spherical shape, the normal 
stress balance on the interface is replaced by an integrated force balance : 

= @ar3(p’(1) -p‘(2)) g‘, (2.1 1 a )  

where Fi is the hydrodynamic drag exerted by the exterior fluid on the drop, P ’ ( ~ )  is 
the density of phase i and g’ is the gravitational acceleration. Equation (2.11 a )  will 
be used to determine the droplet terminal velocities. Writing the normal (7{:!,.,.) and 
shear ( T { i I r e )  stresses in terms of the stream function, (2.11 a )  may be expressed in the 
form 

(2.11 b )  

where after the differentiation the integrand is evaluated a t  r = 1.  
To evaluate the Marangoni stress term in (2. lo), the surfactant concentration r ( e )  

must be determined. This concentration is obtained from the solution of the 
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equations of surfactant conservation at the interface of the droplet and in the 
surrounding bulk phase. To formulate the interfacial conservation balance, Langmuir 
kinetics is used to describe the adsorptive and desorptive exchange of surfactant 
molecules between the surface and the bulk sublayer adjacent to the interface. Thus 
the sublayer-surface exchange, Q ,  is given dimensionally by &’ = -a‘JV-p’C;,,(r = 
1 , O )  (r-Tm), where a’ and p’ are kinetic constants of desorption and adsorption 
respectively, Ci,)(r = 1,O) is the sublayer concentration and rm is the limiting surface 
concentration. (Note that the subscript (s) which appears with C identifies the 
spherical coordinate representation of the concentration field.) The surface 
concentration which is in equilibrium with C:, is obtained from the condition Q’ = 
0, and is given by Fo/rm = k/( 1 + k),  where ro denotes the equilibrium surface 
coverage and k = /3’C,/a’. Note that k represents the ratio of the rates of adsorption 
and desorption. 

Using Langmuir kinetics, the non-dimensional form for the interfacial mass 
balance becomes : 

-- i a  (sinOrV&Jr = 1 , O ) )  = 
sin 8 aO 

A ( s i n O 3  
Pe, sin 8 88 

-v[C,,(r = i , e ) k ( r - i - i / k ) + r ] ,  (2.12) 

where r represents the surface concentration non-dimensionalized with To and Pe, is 
the surface Pkclet number (Pe, = a’Uo/DL,D; is the surface diffusion coefficient). The 
parameter v appearing in (2.12) is given by v = af/(Uo/a’), and represents the non- 
dimensional ratio of the rate of desorption of surfactant off the surface to the rate at 
which surfactant is convected from one end of the droplet to the other. Note finally 
that with the choice of Langmuir kinetics, the equilibrium relation for d(T) ,  which 
follows from the Gibbs adsorption relation, is given by the Frumkin equation d = 
ah-R’T’T“, In (1/(1 - I“/rk)) ,  where gh is the surface tension of the clean interface. 
Consequently, aa’/aI‘‘ appearing in the tangential stress condition is calculated to be 

RT -- auf 
a r  (l-r/rm). 
_-  (2.13) 

The sublayer concentration is obtained from the solution of the bulk con- 
vectivdiffusion equation for the surfactant transport : 

Pe V. VC = V2C, (2.14) 

where V2 is the Laplacian operator, Pe = Uoa’/D’, D’ is the bulk diffusivity of the 
surfactant and C is the bulk concentration. The boundary conditions on the bulk 
concentration are 

and 

(2.15) 

(2.16) 

(2.17) 

In (2.15), @ = D’a’/(p’Uorm), and @(l+ k) can easily be shown to be equal to 
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Pe-’(a’/h’), where h’ is the adsorption depth of the surfactant and is equal to rVo/Cm. 
The adsorption depth is the depth beneath the surface which contains (per unit area) 
as much surfactant as that on the surface a t  equilibrium. This completes the 
formulation. 

2.2. Uniform retardation perturbation scheme 

As remarked in the Introduction, this study examines the regime in which (i) both 
the desorptive kinetic exchange between the surface and the sublayer, and the 
diffusive exchange between the bulk and the sublayer, are fast in relation to surface 
convection, and (ii) the bulk diffusive exchange is faster than that of the desorptive 
kinetics so that the desorption process is rate controlling. For this range of 
parameters, the surface concentration of surfactant only deviates slightly from the 
uniform equilibrium value, and the steady drop velocity is only perturbatively 
affected from the clean surface value. Uniform retardation controlled by desorption 
kinetics is described in terms of the non-dimensional groups introduced in 92.1 by the 
inequalities: (i) v 9 1 (rate of desorption fast when compared to the rate of surface 
convection), and (ii) @ ( l + k )  9 v (diffusive exchange fast when compared to 
desorption). It should be noted that to achieve this uniformally retarded regime, the 
rate of adsorption relative to that of desorption (as measured by the parameter k) is 
not crucial. The perturbation analysis to follow will more precisely define the role of 
k (cf. §3.2), but it is noted here that :  (i) if k + O  (rate of desorption rate faster than 
that of adsorption), the first-order perturbation in the droplet velocity equals zero 
since the amount of surfactant adsorbed onto the surface becomes zero, and (ii) if 
k+ co (adsorption much faster than desorption), uniform retardation is still realized, 
and the largest affect on the drop velocity is achieved since the largest amount of 
surfactant is adsorbed onto the surface. 

The above inequalities necessary for desorption-controlled uniform retardation 
(v 9 1 ; @( 1 + k) 9 v) are not too restrictive : for example, they appear to be suitable for 
the important case (from the standpoint of tertiary oil recovery) of the movement of 
drops in micron-sized channels of rock pores as long as the translational velocity Uo 
and the adsorption depth h’ are sufficiently small. Consider, for example, pore 
diameters of the order of 1 pm, fluid spheres of approximately the same size and 
alcohols as the surface-active species. For the straight-chain n-alcohols, adsorption 
depths near the miscibility limit are (for n < 8) of the order of 0.1 pm or less (see for 
example Hommelen 1959), and unsteady tensiomctry experiments by Bleys & Joos 
(1985) and Joos & Serrien (1989) indicate that a‘ is of the order of loz s-l for these 
alcohols. Therefore in order for the convective rate to be less than the desorptive 
rate, U;, < cm/s. The second condition, @( 1 + k) 9 v or Pe-l(a’/h’) % v, is also 
satisfied for D of the order of cm2 s-l as long as h is of the order of 10-1 pm or 
smaller. Thus, for a fixed diameter and desorption rate constant, the restriction that 
the bulk diffusion is fast when compared to the desorption is satisfied by requiring 
a sufficiently small adsorption depth (or a large enough bulk concentration), and the 
restriction that the desorption is fast when compared to the surface convection is 
satisfied by requiring a sufficiently slow particle movement. 

One further point should be addresed with regard to realizing this uniformally 
retarded regime : the desorption rate must be of the same order as or larger than the 
surface diffusion rate (i.e. v > i /Pe ,  or a’a’2/Di > 1 ) .  For the case cited above, this 
condition is satisfied with Di of the order of 10-6-10-7 cm2/s (one order of magnitude 
smaller than the bulk diffusivity). 

To describe the regime of uniform retardation controlled by desorption kinetics in 
a precise, asymptotic manner, v is scaled to order e-l (v = Y*/E), (v/(Pe-l(a’/h’)))  = 
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O(e) ,  and (Pe,v)-l = O(1) (or O ( e ) ;  it is not important to the first non-trivial order). 
The stream function, terminal velocity and surface and bulk concentration of 
surfactant are expanded in asymptotic series in powers of E as follows: 

(2.18) 

where the subscripts indicate the asymptotic order of the variables. Attention in this 
study will be confined to the zeroth- and first-order variables. 

For the zeroth order, the diffusive uptake of surfactant (2.15) is equal to zero, and 
it can therefore easily be concluded from the zeroth orders of (2.14), (2.16) and (2.17) 
that C(o) = 1. Further, the surface kinetics is in equilibrium and therefore q0, = 1. 
The remainder of the zeroth-order equations become 

E2(E2${$)) = 0, (2.19) 

lim V{:iz(o) = - U(o, (uniform flow), 
Izl+m 

(2.20) 

(2.24) 

Thus the zeroth-order solution is just the solution for the hydrodynamic field in the 
absence of surfactant, and U(o, = 1. 

For the first order, the diffusive uptake is once again zero, and it can easily be 
shown that this leads to C(l) being everywhere zero. The first-order surfactant 
balance becomes 

(sin 0 &o(o)(r = 1,0)) = - v*( 1 + k) ql). i a  -- 
sin 0 a0 

(2.25) 

This expression for Cl, can be combined with the first-order tangential balance to 
yield 

where 
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The remainder of the first-order equations are summarized below : 

E2(E2${t\) = 0, (2.27) 

lim VIE))z(l) = - U(l) (uniform or Poiseuille flow), (2.28) 
I W m  

V[:))z(l) = - q l )  and V[:]p( l )  = 0 ( p  = b) ,  (2.29 a, b) 

Vit{7(1) = V[:;r(l) = 0 and VIi))B(l) = V[,2{,(l) ( r  = i ) ,  ( 2 . 3 0 ~ ~  b,  c) 

Note that to  first order the drag on the fluid sphere is equal to zero. 

3. Solution technique 
3.1. Construction of Jield equation solutions and satisfaction of boundary conditions 

From the defining relations for the boundary-value problems of the zero and first 
order, i t  can easily be shown that the stream function for these orders is a symmetric 
function of z, i.e. $(c,(o(p,z) = $(c) ( i ) (p ,  -2) (i = 1,2). In  view of (2.2) and the 
cylindrical-spherical transformation relations, the symmetry in $(c) (o,(p, z )  requires 
that the zeroth-order surface velocity be symmetric with respect to z((V,,,,,,,(r = 1, 
0)) = J&,s(oj(r = i ,n-O)), and consequently from (2.26) the first-order surface 
concentration is antisymmetric in z (q1)(6) = -ql)(n-O)).  By taking into account 
these reflectional properties, the computational effort is reduced considerably. 

The solution of (2.1) or (2.3) may be obtained by the method of separation of 
variables. For the droplet interior, only the solution in spherical coordinates is 
needed. The form for ${i))(i)(r,  0) that admits bounded solutions as r + O  for V[i))r(a) and 
V[~ , ’ s ( i~  (as given by (2.2) and that is symmetric in z is 

m 

$[i))(i)  = C (EF:~)  rn +F(’). n(i) rn+2) c;+cos e),  (n  even), (3.1) 
n-2 

where G;i( cos 13) is the Gegenbauer polynomial of order n and degree -a. 
For the continuous fluid, a sufficiently general solution is constructed in the 

following manner. The cylindrical-coordinate solution of (2.3) that is symmetric in z 
and that matches the far-field flow as 12) + 00 is of the form 

$[:;( i)(P, 2) = $&(P~+JOW dk{A(,)(4PWP) + B ( , ) ( k ) P 2 ~ 0 ( W  (W 

1 w (uniform) 

1 - Vb2[[a(p/b)2 - 4 ( ~ / b ) ~ ]  ++p2 (Poisueille), 
where $&OAP) = 

and $&Ad = W ( 1 ) P 2 9  

where Io,  11, KO,  and K ,  are the modified Bessel functions of the first and second kind. 
The above form for ~ @ ) ) ( ~ ) ( p ,  z )  is subject to  the condition that V[:lzc0 and V${p(<) be 
bounded a s p  + 0 along the rays z > 1 and z < - 1. This condition is difficult to apply. 
The second integral in (3.2) gives unbounded values for V[f))z(i, as p+O for all z ;  
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elimination of this integral is too restrictive since boundedness is only required for 

To circumvent this difficulty, the second integral can be replaced by the 
Gegenbauer expansion solution of Efs) $ = 0, which yields bounded velocities a t  
infinity. Thus 

121 > 1. 

$8 (a) (P7 4 = $% (&) 

+ JOm dk{A(i)(k) P 4 ( k P )  +B(,)(k) P210(kP)l COS (kZ) 

m + {Egl0((p2 + z ~ ) ( - ~ + ~ ) / ~  

+p:li)((p2 + . z ~ ) ( - ~ + ~ ) / ~ }  ~ ; t ( z / ( p ~  +z2)4)  (n  even). (3.3) 

The above form constitutes a sufficiently general solution (Leichtberg et ul. 1976). 
The technique used to obtain the constants and the k-functions in (3.1) and (3.3) 

is outlined as follows. First, the boundary conditions on the tube wall are satisfied 
exactly, by using the Fourier inverse cosine integral to solve for the unknown 
coefficients A ( k )  and B(k)  in (3.3). Second, the stream function is rewritten in a 
compact form in terms of r ,  O and the unknown constants E:& and Ftl t ) .  These two 
steps are detailed in the Appendix, §A 1, and the stream-function solution which 
satisfies the wall conditions is given by equation (A 6), and is repeated below : 

n-2 

00 

?f+{$(i)(O, r )  = $&& 0) + c [Egli) s;c., 0 )  +FL2)i) X:(r, 611 (n even). 
n-2 

A collocation technique is used to satisfy the boundary conditions on the surface 
of the droplet. The boundary condition V{$r(i) (r  = 1,s) = 0 ((2.22u), ( 2 . 3 0 ~ ) )  can be 
applied directly to (3.1) to  eliminate FFli). Thus the inner solution becomes 

m 

If the other boundary conditions at r = 1 ((2.22b, c)  and (2.23)) and ((2.30b, c) and 
(2.26)) are applied to the solutions (A 6) and (3.4), three simultaneous equations in 
the form of infinite series are obtained. Consider first the clean surface flow or zeroth- 
order solution. In  the collocation technique, the three boundary conditions are 
satisfied at m discrete points along the surface of the sphere, and the series (A 6) and 
(3.4) are truncated into a finite form which includes a total of3m terms. A set of 3m 
simultaneous linear algebraic equation is therefore generated and can be solved using 
any standard matrix reduction technique to obtain the 3m unknown constants Eti0), 
E(,2:O, and Ff:o,. The details are given in the Appendix, §A 2. 

The first-order solution follows the same procedure of solving unknown coefficients 
a t  the zeroth order except that the summations contain p terms, and the Marangoni 
stress term of (2.27) must be included. V&)o(o)(0) up to order 2m can be written as 

where the E:l0, and Fflo) have been obtained previously. Using the above expression 
for V&) B(o) (O), the equations that determine the first-order coefficients Eg)l),  Fgll, and 
Etll) can be formulated. These equations are given in the Appendix, §A 3. 
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An important question arises as to  how to choose the location of discrete points on 
the surface of the droplet to obtain a prescribed accuracy and how to formulate a 
convergence criterion. Owing to  the symmetry in 2, collocation points need only be 
located from 0 < 8 < in. Furthermore, since the droplet is moving in a bounded 
domain, a hydrodynamic influence of the wall on the moving droplet can be 
significant. This influence is largest a t  the equator of the droplet and decreases as 8 
varies from in to  0. The points chosen are thus more dense near the equator and less 
dense near the pole in order to take into account the effect of the wall. 

3.2. Convergence criteria and veriJication of the method 

As explained in the Introduction, the aim of this study is to compute the 
hydrodynamic drag on the droplet, and therefore convergence criteria are based on 
the accurate computation of Fi .  Inserting ( A  6) into (2.11 b )  shows that the drag is 
determined solely by Q) : 

(3.6) 

Hydrodynamic drags are usually expressed in terms of drag coefficients A. Consider 
first the zeroth order Fgk). For uniform flow, F!& is obtained from the solution of 
( A  9)-(A 1 1 )  with V = 0. The drag coefficient for uniform flow with no Marangoni 
stress is denoted by A, and is defined as the ratio of Fk to the force exerted on a 
droplet moving at Uh in an infinite medium. The latter is the Hadamard-Rybczynski 
value 4n’a’y’ (2)U0((1+3~/2) /1  + K ) .  Thus 

J” = - 4na’y’(2) (J’ F(2) 
Z ( f )  0 2 ( 0 .  

(3.7) 

For Poiseuille flow, ( A  9)-(A 1 1 )  indicate that F$L) is the sum of two contributions, 
one (B’pi(o)) derived from the inhomogeneous uniform flow terms (identical to the 
previous case), and one arising from the inhomogeneous Poiseuille terms. The latter 
is linear in V ,  and is denoted by Fgi0) for V = 1 .  The contribution due to the 
Poiseuille terms gives rise to a drag -41ta’y‘(~)U~ VFg\o,. A drag coefficient, A,, is 
defined as this contribution divided by the Hadamard-Rybczynski drag for a sphere 
moving with velocity V’. Thus 

where the minus sign is introduced so that A, is positive. (The drag due to the 
Poiseuille flow over a fixed sphere is in the positive 2’-direction when V’ is larger than 
zero, and therefore is negative.) The total zeroth-order drag in terms of drag 
coeficients is 

Fi(,) = -4na”2’ (y) - [v;, A, - Vh,,. (3.9) 

This decomposition reflects the linearity of the zeroth-order problem of Poiseuille 
flow : the total zeroth-order drag can be thought of as the sum of drags from two flow 
idealizations, one uniform flow past a fixed sphere with the wall moving at  the 
uniform velocity, and the second Poiseuille flow past a fixed sphere with the wall 
stationary. 

For the first order, it is evident from (2.31) and ( A  13)-(A 15) that F!j:i) is a sum 
of three contributions. The first derives from the inhomogeneous U,,, terms in (A 13) 
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h a'lb' 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

A", htl m 4 4 5 7 7 9 10 11 13 
h"W h"o, P 4 4 5 I 7 9 10 11 13 

m 3 4 5 5 6 6 6 9 10 

TABLE 1. The number of collocation points necessary to achieve the accuracy requirement for 
the gas bubble ( K  = 0) 

and is linear in U ( l ) ;  in fact, for U(l) = 1, it is clear that this contribution is identical 
to f?j2(o). The second and third contributions derive from the inhomogeneous 
Marangoni term in (A 15), and these are linear in $. This inhomogeneous term is itself 
composed of two sets of terms, one arising from the uniform flow of the zeroth-order 
state, and one, proportional to V ,  arising from the Poiseuille flow of the zeroth-order 
state. Denoting the uniform flow contribution for $ = 1 by Fi2(l) and the Poiseuille 
contribution for V = 1 and q5 = 1 by F!&), drag coefficients may be defined as 
follows : 

h ( 1 )  = (-). 
Thus the complete first-order drag is 

(3.10) 

(3.11) 

(3.12) 

The decomposition of F&, results from the linearity of the first order. The first-order 
drag can be thought of as the sum of drags from three flow idealizations. The first is 
the uniform flow (with magnitude ql)) past a fixed sphere. The second and third are 
the flows due to the Marangoni surface force term on the left-hand side of (A 15), with 
ys)!(o) given by the uniform flow contribution in one idealization and by the 
Poiseuille contribution in the other idealization. One important conclusion from 
(3.12) concerns the influence of the bulk concentration Ca. This parameter only 
appears in the k non-dimensional group which measures the ratio of adsorption 
(fc',) to desorption (a'). Note that in the uniformly retarded regime considered, k 
only appears in the definition of $, as k / ( k + l ) .  Since from (3.12) the first-order 
hydrodynamic drags due to surfactant redistribution are linear in $, the dependence 
of these drags on the bulk concentration is linear in k / ( k + l ) .  Thus when the bulk 
concentration is equal to zero, no surfactant-related hydrodynamic drags result, and 
when cl, is large (k- t  co), $ is at a maximum, and the largest surfactant influence is 
obtained. 

For the zeroth order, A, and A, are computed until the difference for successive 
values of m divided by the previous value is less than For and A,(,,, the 
same procedure is followed in p with m held fixed, and then m is varied until a 
precision of is reached. Table 1 illustrates for K = 0 the number of points 
necessary to achieve this accuracy for A,, A,, A,(l) and as a function of a'/b'. 
Interestingly, as table 1 indicates, for convergence of the first-order drag coefficients, 
less collocation points were necessary for the determination of the zeroth-order 
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a'/b' 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

A, 
1 .oooo 
1.2632 
1.6795 
2.3701 
3.5914 
5.9474 

1 1.092 
24.676 
74.670 

469.15 

A" 
1 .oooo 
1.2547 
1.6348 
2.2289 
3.2157 
4.9953 
8.6130 

17.474 
47.620 

266.37 

Haberman & Sayre 

A, A* 
1 .om 1 .om 
1.263 1.255 
1.680 1.635 
2.371 2.231 
3.596 3.218 
5.970 5.004 

11.135 8.751 
24.955 17.671 
73.555 47.301 

Wang 6 Skalak 

A, A" 
1.000 1.000 
1.263 1.255 
1.680 1.635 
2.370 2.229 
3.592 3.216 
5.959 4.996 

11.10 8.617 
24.70 17.49 
74.97 47.81 

TABLE 2. Comparison of converged values of drag coefficients A, and A, with the results of 
Haberman & Sayre (1958) and Wang 6 Skalak (1969) for a solid particle ( K  = lo8) 

Hyman & Skalak 

a'lb' K A, A" A, A" 
0.1 0 1.1632 1.1631 1.16 1.16 

1 .o 1.2111 1.2063 1.211 1.206 
0.2 0 1.3900 1.3895 1.39 1.39 

1 .o 1.5209 1.4965 1.520 1.496 
0.3 0 1.7251 1.7211 1.725 1.722 

1 .o 1.9951 1.9222 1.995 1.922 
0.4 0 2.2626 2.2486 2.263 2.241 

1 .o 2.7647 2.5820 2.765 2.582 
0.5 0 3.2224 3.1295 3.222 3.130 

1 .o 4.1197 3.6847 4.123 3.685 
0.6 0 5.2043 4.8453 5.205 4.846 

1 .o 6.8070 5.7435 6.808 5.744 
0.7 0 10.25 8.8356 10.26 8.838 

1 .o 13.242 10.321 13.22 10.32 
0.8 0 28.615 21.704 28.59 21.72 

1 .o 34.450 24.231 34.47 24.26 
0.9 0 173.89 109.89 

1 .o 182.98 111.91 

TABLE 3. Comparison of converged values of drag coefficients A, and A, with the results of 
Hyman & Skalak's (1970) exact solution for a fluid droplet 

surface velocity than were needed for the convergence of the zeroth-order drag 
coefficients (m for convergence of A, and A, are larger than m for convergence of 
and A V ( 1 ) ) .  

This section concludes with a verification of the method. Previous studies by 
Haberman & Sayre (1958) and Wang & Skalak (1969) have computed A, and A, for 
a solid sphere. These values are compared in table 2 with values obtained from this 
method for K = lo8. The fact that the deviations are all less than 1 % gives confidence 
in the method. Further verification is obtained by comparing the zeroth-order clean- 
surface drags for finite values of the droplet viscosity with the results of Hyman & 
Skalak (1969, 1970). This comparison is detailed in table 3 for K = 0 and 1, and a'/b' 
between 0.1 and 0.8 in increments of 0.1 ; these are the values of the viscosity ratio 
and droplet to tube diameter ratio studied by Hyman & Skalak. The agreement is 
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15 

1000 

a’ lb 
FIGURE 2. Drag coefficient A, for uniform flow past a fixed sphere as a function of the ratio of 

the particle to tube diameters a’/b‘ for different values of the viscosity ratio K.  

within 0.1 %. Clean-surface drag coefficients as a function of a’lb’ for other values of 
the viscosity ratio ( K  = 0.5 and 2) as well as for K = 0, 1.0 and lo8 are given 
graphically in figures 2 (for A,) and 3 (for A,). The hydrodynamic reasons for the 
trends of these zeroth-order drags are important to the understanding of the first- 
order surfactant results, and figures 2 and 3 are therefore briefly discussed in the 
paragraph below. 

It is clear from these figures that, for fixed K ,  both A, and A, increase as a’lb’ 
increases. Recall that the drag on the sphere in the flow idealizations that define A, 
and A, is equal to a coefficient gl (c = 4xa’,~’(~’(l +gK)/(l + K ) )  multiplied by A, Uo or 
A, V. Thus since is independent of a‘lb’, the drag (for fixed Uo or V‘) increases as 
a‘/b’ increases. This is to be expected because, as the gap between the sphere 
perimeter and the tube wall decreases, the shear rate in the gap in the vicinity of the 
sphere increases. This results in a higher shear stress being applied to the sphere by 
the fluid, and the drag consequently increases. A second common characteristic of 
figures 2 and 3 is the fact that A, and A, increase with K at fixed a‘lb’. For fixed Uo 
or V’, the drag also increases because E‘ is a monotonically increasing function of K 

varying from 1 to g. Similar reasoning explains this increase: as the ratio of the 
droplet to continuous phase viscosity increases, the droplet surface velocity 
decreases. This reduction in the surface velocity causes the shear rate in the vicinity 
of the drop to increase, and thus the drag coefficient becomes larger. Finally, the 
results show that for fixed K and a’lb’, A, is always larger than Av, and this difference 
is more pronounced at larger values of a’/b’ and K .  From the definitions given in $3.1, 
it is clear that the drag coefficient for uniform flow is equal (apart from the factor gl) 
to the drag for unit velocity at  infinity (unit terminal velocity), while the drag 
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0 0.2 0.4 0.6 0.8 1 .o 
a’lb‘ 

FIGURE 3. Drag coefficient A, for Poiseuille flow past a fixed sphere as a function of the ratio of 
the particle to tube diameters a’/b‘ for different values of the viscosity ratio K .  

coefficient for Poiseuille flow is directly proportional to the drag for a unit centreline 
velocity. Thus the flow rate of fluid in the gap between the sphere and tube is, for the 
case of uniform flow, twice that of Poiseuille flow. This increased flow rate gives rise 
to a higher shear rate near the sphere, and thus a larger drag. Note that when the 
gap is very thin (a’lb’ large) or the surface velocity is reduced ( K  large) this effect is 
proportionately higher, and it explains the larger differences between A, and A, as 
either a’lb’ or K is increased. 

4. Surfactant results 
4.1. Hydrodynamic drag 

As explained in $3.2 (cf. (3.12)), the first-order hydrodynamic drag, Pi,,,, is composed 
of three terms. Because of the linearity of the first-order equations, these terms may 
be interpreted as the drags exerted on the droplet from three separate flow 
idealizations. The first idealization is the uniform flow, with magnitude U&), past a 
fixed sphere. This drag is dimensionally equal to -fl‘A, &). The second and third 
idealizations are the flows caused by the surface force 

with the wall and the fluid at infinity at rest. The zeroth-order surface velocity F&)e(o) 
appearing in the surface force is the sum of two contributions. The first is the surface 
velocity that results from uniform flow (with magnitude Uo) past a fixed sphere. The 
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FIGURE 4. First-order non-dimensional velocity distribution due to the Marangoni surface force 
derived from the zeroth-order uniform flow. The velocity vector is normalized by Uo, and the 
distribution is for K = 0.5, q5 = 1 and a’/b’ = 0.5. 

second is the surface velocity that results from Poiseuijle flow, with centreline 
velocity V ,  past the fixed sphere. The flow idealizations caused by these two 
contributions to the surface force are discussed below. 

> 0, surfactant is convected to the 
negative z-pole, and therefore a Marangoni stress is directed from the negative z- to 
the positive z-pole. This traction causes the fluid to move in the positive z-direction, 
and a balancing hydrodynamic drag in the negative z-direction develops. The 
dimensional magnitude of this drag is equal to -rq5Au(l) Uo. The flow idealization 
caused by the uniform flow contribution to the Marangoni stress is shown in figure 
4 for q5 = 1, a‘/b’ = 0.5 and K = 0.5. This field, and others which follow, is computed 
in the following manner. A portion of the flow field is divided into a grid. At  each of 
the grid points the velocity is computed from the expression for the stream function 
((3.9) and (A 6)). This is undertaken for a particular value of m (or m and p if, as in 
the case of figure 4, the computation is for a first-order field), and then m and p are 
increased until a 1 %  convergence at  all of the grid points is achieved. Figure 4 

For the uniform flow contribution, when 



18 
L 

. I  

FIQURE 5. First-order non-dimensional velocity distribution due to the Marangoni surface force 
derived from the zeroth-order Poiseuille flow. The distribution is for K = 0.5, d/b‘ = 0.5, q5 = 1 and 
v/uo = 1. 

indicates that the magnitude of the fluid velocity is largest at the droplet surface. 
This high surface velocity is because the driving force is being exerted on the surface. 
Also note from the figure that a recirculation develops in the gap between the sphere 
and the tube wall since the flow at infinity is equal to  zero. 

The second contribution to the zeroth-order surface velocity in the Marangoni 
stress term is that due to the Poiseuille flow. When P > 0, the Poiseuille flow 
convects surfactant to the positive z-pole and therefore a Marangoni stress is created 
which is directed from the positive to the negative pole. This causes fluid to move in 
the minus z-direction, and an equalizing hydrodynamic drag develops in the positive 
z-direction. The magnitude of this drag is equal to  r$h,,,, P. The flow idealization 
for the Poiseuille-induced surface force is given in figure 5 ,  again for q$ = 1, K = 0.5 
and a‘/b‘ = 0.5 (also V’/U;, = 1).  The structure is similar to  the field induced by the 
uniform flow, but the magnitude of the velocities is uniformly smaller. This can be 
explained as follows. For P/UA = 1, the flow rate in the gap between the sphere and 
the tube wall for uniform flow is twice as large as that for Poiseuille flow. Since the 
flow rate is larger the change in the average velocity between the entrance and exit 

2. He,  2. Dagan and C.Maldarelli 
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FIGURE 6. First-order drag coefficient correction hue, for the surface Marangoni force 
corresponding to the uniform zeroth-order flow as a function of a'/b' for different values of K .  

to the gap, and the gap centre, is much larger for uniform flow than for Poiseuille 
flow. Therefore the surface gradient of velocity and thus the dilatation is larger. Since 
the dilatation is proportional to the surface force it too is larger for the uniform flow 
and thus the velocities arising from the surface force for this case are larger. 

The converged results for A,(,) and A,(,) are given, respectively, in figures 6 and 7 
for K = 0, 0.5, 1 and 2 and the gap ratio a'/& in the range 0.1 to 0.7.  From these 
figures it is clear that A,(,, and A,(,, are increasing functions of a'lb' and decreasing 
functions of K .  (Parenthetically note also that when A,(l) and A,(,, are multiplied by 

(which itself increases monotonically with K ) ,  the result is gA,(l) $Uo, rA,(,) q5V' 
and thus the actual first-order drag due to the surface forces still decreases with K 

with Uoq5 and V'q5 held constant.) The fact that the Marangoni drag caused by the 
surface forces increases with a'/b' and decreases with K can be explained as follows. 
As the ratio of the droplet to the continuous phase viscosity increases or the sphere 
to tube diameter decreases, the circulation within the droplet is diminished and the 
surface dilatation (( l/sin 6) sin 6V,,, B ( o ) )  is reduced. The reduction in the 
dilatation causes a decrease in the surface force which drives the flows in the two 
idealizations with respect to which A,(,) and A,(,) are defined, and this results in a 
decrease in the drag. Finally note from figures 6 and 7 that as a'/b' tends to zero, A,(,) 
approaches A,(,). This is to be expected since as a'/b'+O, the zeroth-order surface 
velocities for uniform and Poiseuille flow become equal. (Recall that in this limit, A, 
approaches Av.) 

As remarked in the Introduction, there have been no attempts in the literature to 
examine the hydrodynamic drag exerted on fluid particles in tubes for the case in 
which surfactants are adsorbed onto the fluid particle surfaces. However, the 
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FIQURE 7. First-order drag coefficient correction AUo, for the surface Marangoni force 
corresponding to the zeroth-order Poiseuille flow as a function of a’lb’ for different values of K .  

influence of surfactants on the drag exerted on particles in an infinite medium has 
been studied extensively and these studies may be used to  verify the present results. 
In  particular, for the case described in 52.2 in which sublayer-surface kinetic 
exchange is fast, but rate limiting, Levich (1962) derived the following expression for 
L(0 : 

Values from Levich’s expression should agree with the converged values of as 
given in figure 6 as a‘/b’ tends to zero since in this limit the hydrodynamic effect of 
the wall on the drag becomes negligible. The values from Levich’s expression for 
K = 0, 0.5, 1 and 2 are, respectively, 0.333, 0.127, 0.0667, and 0.0278. These values 
agree with the asymptotes in the figure, and this agreement provides a check of the 
first-order results. 

4.2. First-order terminal velocities 

With the hydrodynamic drag determined, terminal velocities for different cir- 
cumstances can be computed. Three cases are considered here: (i) the motion of a 
drop in a vertical tube due only to  gravity, (ii) the motion of a neutrally buoyant 
drop suspended in Poiseuille flow and (iii) the motion of a drop in a vertical tube due 
to gravity and Poiseuille flow. These are considered separately in the following. 

The first case is that  of the motion due to  gravity of a droplet in a vertical tube with 
the fluid a t  rest far away from the drop. Consider first the zeroth order. The (zeroth- 
order) force exerted on the drop is equal to ; ~a ’~ (p ’ ( l )  -p ’ (” )  9’. Summing this 
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I 

a fixed sphere. This field is for K = 0.5 and a'/b' = 0.5. 

force with the hydrodynamic drag as given in (3.9) with P = 0 yields 
- U' o u  A 5 / - & ~ a ' ~ ( p ' ( ' ) - p ' ( ~ ) )  g = 0, and therefore the following equation for Uo is 
obtained : 

where U'H-R denotes the Hadamard-Rybczynski gravitational terminal velocity in 
an infinite medium and is 

An illustration of the velocity field for this case for a'lb' = 0.5 and K = 0.5 is given 
in figure 8 in the reference frame in which the sphere is stationary. 

For the first order, the drag is zero and thus, from (3.12) 

- u;1)  A, - 9G AU(1, = 0 (4.4) 
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FIGURE 9. The first-order velocity correction for a surfactant-laden droplet moving under 
buoyancy in a tube filled with a still fluid as a function of a‘/b‘ for different values of K .  

(4.5) 

Note that since ql, is of opposite sign to Ui,  the presence of a surfactant reduces the 
droplet speed. A graphical representation of the dependence of - ql)/($Uo) on a’/b’ 
for K = 0, 0.5, 2 and 2 is given in figure 9. (Note that $Uo is not a function of a’/b’ 
or K ) .  The figure indicates that the relative correction is a decreasing function of K .  

This is to be expected since A, increases with K ,  and Au(l) decreases with K .  Thus 
A,(l) /A, must decrease with K .  The figure also shows that -ql)/($U0) is an 
increasing function of a‘/b’ for a’lb’ < 0.5. After this point, as a‘/& increases the 
curves level off, and for K = 0, begin to decrease. These results reflect the fact that  
for a’lb’ < 0.5, A,(l) increases faster with a’/b’ than does A,, but after 0.5 the reverse 
begins to be true. Apparently, as the ratio of sphere to tube diameter increases, at 
first the increase in the Marangoni drag A,(l) due to  increasing a’/b’ overcompensates 
for the increase in the drag A, which resists the Marangoni-induced motion, but 
eventually the increasing effect of a‘lb‘ on A, becomes controlling. 

For the gravity-driven flow, the first-order surfactant distribution (ql)) may be 
obtained from (2.25). A graph of ql, v*( 1 + k) for K = 0.5 and a’/b’ = 0.5 is presented 
in figure 10 (dashed line). The graph exhibits the accumulation of surfactant a t  the 
downstream pole (0  = 7c) due to the zeroth-order flow and is antisymmetric with 
respect to 8 = because of the symmetry in the velocity field (cf. the discussion a t  
the beginning of $3). 

The second case is the motion of a neutrally buoyant sphere in Poiseuille flow. In  
this case no force is exerted on the drop, and the hydrodynamic drag is equal to zero. 
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FIGURE 10. The first-order correction for the surfactant distribution for buoyancy-driven motion 
in a still liquid and for a neutrally buoyant particle suspended in Poiseuille flow ( K  = 0.5, 
a'/b' = 0.5). 

Setting F& = 0 in (3.9) yields the relationship between Uo, the steady droplet 
velocity, and V', the centreline velocity of the Poiseuille flow: 

Since A, < A,, the terminal velocity Uo is always less than the centreline velocity V'. 
Note also that &/A,  is a decreasing function of K and a'lb' since, as discussed above, 
the disparity between A, and A, increases as either a'lb' or K is increased. Thus the 
terminal velocity of a fluid droplet suspended in a Poiseuille flow will decrease 
relative to the Poiseuille centreline velocity V' as either K or a'lb' is increased. 
Illustrations of the flow field for this case (non-dimensionalized by Uo) are given in 
figures 11 ( a )  and 11 ( b )  for K = 0.5 and a'/b' = 0.5 in the frame in which the drop is 
stationary and the wall is moving a t  unit velocity. 

The flow fields of figures 11 (a)  and 11 ( b )  show the recirculation of the continuous 
phase at  the front and back of the drop due to the fact that the terminal velocity is 
less than the centreline velocity. The stagnation rings on the surface of the sphere, 
which are caused by the recirculation are shown clearly in the enlargement (figure 
11 b ) .  For decreasing values of Uo/V' (for example due to increasing K ) ,  the rings move 
towards the equator (0 = in) as the recirculation becomes more pronounced. This 
trend is shown in table 4 where the location of the upstream stagnation ring is 
detailed as a function of K for a'lb' = 0.5. 

Since the force on the drop is zero for this case, F& = 0, and (3.12) may be used 
to solve for ql,. The result is 

(4.7) 

where use has been made of the zeroth-order result Uo = (Av/A,) V' to eliminate V'. 
Graphs of -ql)/(q5qo)) as a function of a'/b' for K = 0, 0.5, 1 and 2 are given in 



FIGURE 11.  (a )  Clean-surface non-dimensional velocity field for a neutrally buoyant fluid particle 
in a frame for which the particle is stationary. This field is for K = 0.5, a'/b' = 0.5, and V/U0 = 
A,/& ( b )  Enlargement of the upstream pole of the field detailed in ( a )  showing the recirculation 
in the continuous phase and the location of the stagnation ring on the surface. 
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FIGURE 12. The first-order velocity for a neutrally buoyant surfactant-laden droplet moving in 
a tube as a function of a’lb’ and K .  

figure 12. The graphs indicate that -qI)/(#q,,)) > 0 for the values of a’/b’ and K 

used, and therefore the droplet speed is once again retarded because of the surfactant 
adsorption. The dependencies of the correction on a’/b’ and K are similar to that for 
the gravity-driven motion (figure 9). 

The first-order surfactant distribution for the motion of a neutrally buoyant 
sphere in Poiseuille flow is given in figure 10 (solid line) for K and a‘/b’ equal to 0.5. 
This figure should be compared with the zeroth-order velocity field as given in figures 
1 1  (a )  and 1 1  (b ) .  Because of the zeroth-order flow, surfactant is swept away from the 



stagnation ring a t  23.58' and the downstream pole, and towards the upstream pole 
and the stagnation ring a t  156.42'. This causes the accumulation of surfactant a t  the 
upstream pole and the 156.42' ring and a depletion in the other two stagnation areas. 
Note importantly that even in this first-order theory, the minima and maxima do not 
occur precisely a t  the stagnation zones but are offset from these. This is because 
(from (2.25)) extreme behaviour in ql) occurs when the dilatation is a t  a minimum 
or maximum, not when the surface velocity is zero. 

The last case is a droplet moving due to gravity in a vertical tube with Poiseuille 
flow a t  infinity. The zeroth-order force balance is 

from which the terminal velocity U;, may be computed in terms of the centreline 
Poiseuille velocity and the gravitational force. Thus 

It is clear from (4.9) that Uo/V may take on any value depending on the ratio 
UH.R/V. As VH-,/V’ decreases from zero and tends to - A ,  (the value that arrests the 
sphere), Vo/V decreases from the neutrally buoyant value (AJA,) towards zero. The 
stagnation ring moves from the neutrally buoyant location towards the equator 
(0 = in). This behaviour is detailed in table 4 ( a )  for K = 0.5 and a’/b’ = 0.5. 

Again from (3.12) with FL,,, = 0, the first-order velocity may be obtained. The 
result is 

for a given value of V'/Uo. This latter ratio, obtained from (4.9) is a function of t7H-R 
and may take on any value depending on UH.R/V'. Several cases are possible, and 
these are discussed in the following paragraphs. 

If the buoyancy force and the centreline velocity are in the same direction, then 
UH.R/V' > 0. From (4.9) i t  is clear that for this case U0/P > 0 and is larger than the 
neutrally buoyant value. From (4.10), U;,,/Ub < 0 and, in fact, is larger (in absolute 
value) than the neutrally buoyant value. Thus for this case the drop is retarded even 
more than for the case of the neutrally buoyant sphere. The reason is clear. As 
UH.R/V' increases from zero, Uo/V increases from the neutrally buoyant value and 
the stagnation rings approach the poles. The regions on the surface of Marangoni 
stress that cause acceleration of the drop disappear, and thus retardation is 
increased. 

Consider next the case in which the buoyancy force is in the opposite direction to 
that of the Poiseuille centreline velocity (UH.R/V' < 0) but larger than -Av (the 
value that arrests the clean sphere translation). Then Uo/V' is still larger than zero 
(see (4.9)), but smaller than the neutrally buoyant value of Av/A,. As UH.R/V' tends 
to -Av, U0/V tends to zero (see (4.9)) and (4.7) indicates that ql ) /Uo will become 
larger than zero. Thus droplet acceleration can be realized in the limit in which 
UH.,/V' tends to -Av and Uo/V consequently becomes vanishingly small. The reason 
is that as UH.,/V' approaches -Av, the stagnation rings approach in and the 
Marangoni stresses that accelerate the drop increase a t  the expense of those that 
retard the translation. Hence the eventual increase in speed with surfactant 
adsorption. This behaviour is illustrated in table 4(b) for K = 0.5 and a'/b' = 0.5. 
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Finally, for the case in which the buoyancy and the centreline velocity are in 
opposite directions (UH.E/V' < 0 )  and UH.R/V' < - A v ,  U0/V becomes less than zero 
(see (4.9)) and the sphere moves opposite to the Poiseuille flow. The surfactant 
distribution increases monotonically towards the downstream pole (now at 8 = 0) 
and Marangoni stresses simply retard the speed (U;l,/Uo < 0, equation (4.10)). 

5. Conclusions 
This study has focused on the determination of the hydrodynamic drag exerted on 

a spherical fluid particle in a tube for the case in which the particle interface is 
covered by surfactant adsorbed from the continuous liquid phase filling the tube. To 
compute the influence of the adsorbed monolayer on the hydrodynamic drag, the 
surface surfactant distribution must be determined so as to calculate the interfacial 
tension gradient or Marangoni force. In this study a perturbative approach was 
adopted which simplifies the determination of the surfactant surface concentration 
by isolating in a simplified way one non-convective transport mechanism, kinetic 
exchange. In  this approach, the kinetic exchange of surfactant a t  the interface by 
desorption is assumed to be much faster than the rate of convection of surfactant 
from one pole of the drop to  the other (v = O( l / e ) ) .  Diffusion of surfactant in the bulk 
is relegated to higher-order effects by the assumption that the adsorption depth is 
sufficiently small. Within this perturbation scheme, to order zero in e ,  the surface 
surfactant concentration was shown to  be uniform, and the drag was therefore 
described by the clean-surface drag coefficients A, and A,. 

The first-order surfactant distribution is determined solely by the zeroth-order 
surface dilatation. The first-order drag coefficients were computed from the 
Marangoni surface force corresponding to the first-order surfactant distribution. The 
solutions obtained for the flow due to  the Marangoni surface force 'may be viewed in 
a general way since the flow due to any arbitrary surface force may be obtained from 
the framework by replacing the #-term on the left-hand side of (A 15) with the 
arbitrary surface force exerted as a function of 8. 

The results for uniform flow resembled those for uniform.flow past a spherical 
droplet in an infinite medium : the only stagnation regions along the clean surface are 
a t  the poles (figure 8) ; surfactant molecules collect a t  the downstream stagnation 
pole (figure lo) ,  and the resulting Marangoni stress retards the terminal velocity 
(ql)/Uo < 0, figure 9). The interesting point with regard to the uniform results is that 
the retardation a t  first increases with a'lb', and then becomes modulated and may 
even decrease (for small K )  for larger a'/b' (cf. figure 9) .  

The most interesting surfactant results were obtained for particles placed in 
Poiseuille flow. For neutrally buoyant particles the zeroth-order flow exhibited two 
stagnation points a t  the poles and two stagnation rings (figures l l a  and l i b ) .  The 
surface flow for this case is such that fluid moves away from the upstream stagnation 
ring and downstream pole and towards the upstream pole and downstream 
stagnation ring. It is important to note that the backflow towards the upstream 
stagnation point and away from the downstream pole is due to  the Poiseuille 
component of the flow at infinity. As the centreline velocity V' increases relative to 
Uo, the stagnation rings move towards 0 = (table 4). As a result of the zeroth-order 
surface velocity distribution, surfactant accumulates in the first-order state at the 
upstream pole and downstream stagnation ring and is depleted a t  the other 
stagnation zones (figure 10).  Between the upstream stagnation ring and upstream 
pale a Marangoni tension in the minus z-direction is created. The same is true 
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between the downstream pole and downstream stagnation ring. These Marangoni 
tractions are balanced by stresses exerted in the positive z-direction by the liquid 
surrounding the fluid particle. Such stresses accelerate the particle, and therefore 
tend to make ql)/Uo > 0. Between the downstream and upstream rings a Marangoni 
tension in the positive z-direction arises, and a balancing continuous fluid drag 
decelerates the particle as i t  acts in the minus z-direction. These effects are reflected 
in (4.10) where the first term on the right-hand side accounts for the retarding stress 
of the region between the rings and the second term represents the accelerating 
stresses of the ring to pole regions. For the case of the neutrally buoyant particle, the 
relationship beween V' and Uo is such that the decelerating effects predominate and 
the velocity is retarded (figure 12) ,  but as Uo/V' tends to zero (as a result of gravity 
acting in a direction opposite to  the drag of the Poiseuille flow), first-order 
acceleration is possible as the stagnation rings move further towards the equator 
(table 4). 
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Appendix. Some details of the solution construction and boundary 
conditions 

Using (3 .3) ,  the boundary condition ( ( 2 . 2 2 ~ )  or ( 2 . 2 9 ~ ) )  becomes 
A. 1. Construction of solutions satisfying the wall conditions 

JOm dk{A,,,(k) klo(bk) +B@) {bk l , (bk )  + 210(bk)]} cos (kz) 

00 

= - 2 [Efti) G: ( 2 )  +Ffti) G2, ( z ) ] .  (A 1) 
n=2 

Instead of using V[E?p(i,(p = b )  = 0 ((2.21b), (2 .293)) ,  the equivalent condition 
${:;ci)(p = b )  = @g)(,)(b) is applied for convenience. That is 

m 

JoW dk{A(i)(W bl , (bk)  +B(i)(k) b2.r,(bk)) cos ( k z )  = - c [ - c ) i )  G3,(4 +Pf)i) G4,(2)1, 
n=2 

(A 2 )  
where, for j = 1 , 2 , 3 , 4 ,  c l , ( z )  are of the form 

I 

In the above, spherical coordinates ( r ,  6) have been transformed into cylindrical 
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coordinates (p, 2). The boundary conditions (A 1) and (A 2)  can be inverted by the 
inverse Fourier cosine transform to solve for A(k)  and B(k).  Integrating the inverse 
integrals yields 

[ ( -1)Ko(bk)-(2n-3)bkK,(bk)], H i ( k )  = -(-1)n/2-kn-2 n n 
2 

xn!  

2 
x n !  

2 
H4,( k) = - ( - l)n'2 - 

H i ( k )  = - (-  l)n/2-bk"-l K , ( W ,  

(2n - 3 )  bkKo(bk) - ( n  - 2) (n - 3) K,(bk)] .  

where H i ( k ) , j  = 1 ,2 ,3 ,4 ,  are given as (Leichtberg et al. 1976) 

2 
xn . Hk(k)  = ( -  1)"/2+C"Ko(bk), 

) ( A 5 )  

I 

In the above 

I 
m 

s t ( r ,  8) = r-n+lC;i(cos 0 )  + s dk cos (kr  cos O){TI,(k) r sin 01,(kr sin 8) 
0 

+ T j ( k )  (rsin8)210(krsin0)}, 

Si ( r ,  0 )  = r-n+3C;i( cos 8) + dk cos (kr cos 0)  { T", (k) r sin 81, (kr sin 8) som 
+ Pm(k)(rsin8)210(krsin8)}. 

The T",(k) functions (i = 1 ,2 ,3 ,4 )  appearing in (A 7) are defined as 

(2 + bkB) H i (  k) - b2Hk( k) (2+/3KB) H4,(k)-b2Pn(k) 
A 9 T%) = A m k )  = 

where B and A are defined 

Q=- A = b2klo(bk) -2bI,(bk) -b2kIl(bk) B. 
Io(kb) ' 

The integrals in (A 7 )  must be evaluated numerically once T and 8 are specified. 
2-2 



30 2. H e ,  2. Dagan and C .  Maldarelli 

A.2. Collocation conditions on the sphere surface (zeroth order) 
When the zeroth-order (tangentially free) boundary conditions on the surface of the 
sphere are satisfied a t  m points on the first quadrant of the sphere surface, the 3m 
truncated equations from boundary conditions (2.22 b,  c )  and (2.23) are given as 

EE;,,) C;~(cosO,)], (A 10) 
2 +- 

sin Bi 

2(2n- 1) K 

sin 8, Ef&, C;i(cos O,)], (A 11) - 

where i denotes the collocation point (i = 1,2 ,  . . . , m) and the SP,( 1,0,) are given 
below. The above equations are valid for Poiseuille flow a t  infinity. The equations 
valid for uniform flow may be obtained from these by letting V = 0:  
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A.3. Collocation equations for the first order 
Satisfying (2.26) and (2.30 b ,  c )  at p distinct points on the first quadrant of the sphere 
results in the following 3p equations : 

2P 

- q1) cos ei = C. [E:),::,, x;(i, e,) +F:;~) x:( 1,  e.) 1 7  (A 13) 

-U(,,sin8,-$- --sinO-Vsine [ 1 -  ( - 'J] + sin e ae a { i  s ineae a 

where 2p is the order of the first-order field. Again, the above equations are valid for 
Poiseuille flow. Those valid for uniform flow may be obtained by setting V = 0 in 
(A 15). 
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